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Abstract— Automatically understanding human behaviour
allows household robots to identify the most critical needs
and plan how to assist the human according to the current
situation. However, the majority of such methods are developed
under the assumption that a large amount of labelled training
examples is available for all concepts-of-interest. Robots, on
the other hand, operate in constantly changing unstructured
environments, and need to adapt to novel action categories from
very few samples. Methods for data-efficient recognition from
body poses increasingly leverage skeleton sequences structured
as image-like arrays and then used as input to convolutional
neural networks. We look at this paradigm from the perspective
of transformer networks, for the first time exploring visual
transformers as data-efficient encoders of skeleton movement.
In our pipeline, body pose sequences cast as image-like repre-
sentations are converted into patch embeddings and then passed
to a visual transformer backbone optimized with deep metric
learning. Inspired by recent success of feature enhancement
methods in semi-supervised learning, we further introduce
PROFORMER – an improved training strategy which uses
soft-attention applied on iteratively estimated action category
PROtotypes used to augment the embeddings and compute an
auxiliary consistency loss. Extensive experiments consistently
demonstrate the effectiveness of our approach for one-shot
recognition from body poses, achieving state-of-the-art results
on multiple datasets and surpassing the best published ap-
proach on the challenging NTU-120 one-shot benchmark by
1.84%. Our code will be made publicly available at https:
//github.com/KPeng9510/ProFormer.

I. INTRODUCTION

There have been impressive advances activity recognition
frameworks tailored for robotics applications [1], [2], [3], [4],
[5], [6], [7], [8]. However, this task remains very challenging
in practice, as agents mostly operate in an open constantly
changing environment and we will never be able to capture
and annotate a high amount of training examples for every
possible category [9], which is a requirement in the majority
of presented approaches. Especially in the light of growing
elderly population, data-efficient recognition of Activities of
Daily Living (ADL) is a vital ingredient for household robot
perception and situation-aware assistance [10].

Problems of data-efficient ADL recognition are often
posed in the form of one- or few-shot learning [11], [12],
[13], [14] and addressed with metric learning [15], [16],
[17] or meta learning [18]. For example, the state-of-the-art
approaches for one-shot action recognition from body pose
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Fig. 1. An overview of the proposed PROFORMER approach for data-
efficient representations of body movement using visual transFORMERS
and an enhanced training strategy with feature-level augmentations through
action category PROtotypes.
data [15], [15] leverages a Convolutional Neural Network
(CNN)-based encoder for signal-level skeleton representation
and the deep metric learning paradigm. While few re-
cent works considered transformer networks in conventional
video-based human activity classification [19], their potential
as signal encoders of body movement and transfer capabilities
to new data-scarce activities classes has been overlooked.

Multiple approaches cast skeleton representations as
image-like structures [15], [20], [21], oftentimes encoding
the time dimension in the rows, skeleton joints in the columns
and the 3D coordinates as the channels (N joints×N f rames×3).
Such encodings preserve the communication among different
joints under a certain time range and the resulting tensors
are passed to a conventional CNN, therefore allowing us to
reuse CNN-based architectures developed with image input
in mind for the body pose data. Could we also leverage
such image-like modelling of skeleton dynamics with the
rapidly emerging visual transformers? Different segments
of a body movement sequence are not equally transferable.
We therefore believe that the transformer networks, which
learn to amplify or blend potions of input through self-
attention and are also known to suit especially well for
sequential data [22], are an excellent tool for building well-
generalizable ADL recognition models.

Motivated by this, we seek to investigate the reuse of
visual transformers initially developed for images as signal-
level body movement encoders in ADL and, additionaly,
introduce a new training strategy leading to more robust
models. We specifically target data-scarce recognition and
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conduct a systematic study featuring off-the-shelf trans-
former architectures benchmarked in the tasks of skeleton-
based one-shot activity recognition. Our framework com-
prises image-like representation of skeleton movement, i.e.,
signal-level representation, different variants of the visual
transformer backbone and deep metric learning optimization
and proves to be more effective in data-scarce human activity
recognition than its CNN-based counterparts.

However, problems of data-scarce recognition are not
restricted to the architecture and encoding choice. An im-
portant question is how to train your network in order
to obtain well-adaptable representations. Inspired by recent
advances in semi-supervised learning [23], [24], [25], we
introduce a new optimization strategy, which expands the
deep metric learning paradigm with an auxiliary loss for
encouraging invariance to transformations through consis-
tency constraints and augmentations with previously learnt
action category prototypes. We refer to our final PROtotype
based transFORMER architecture as PROFORMER, since it
is optimized with consistency- and PROtotype-based feature
enhancement.

We show that our method achieves state-of-the-art results
across three different benchmarks for skeleton-based one-
shot ADL recognition, outperforming the best published re-
sults on the challenging NTU-120 benchmark [26] by 1.84%.
However, the benefit of the PROFORMER optimization goes
beyond well-adaptable movement embeddings. Presumably
due to the enhanced intermediate feature augmentations used
in PROFORMER, we observe remarkable advantages in case
of noise corruptions (> 35% on NTU-120 with σ = 0.1
Gaussian noise).

To summarize, our contributions are:
1) We for the first time explore visual transformers as data-

efficient encoders of skeleton movement sequences cast
as image-like representations.

2) We introduce PROFORMER – an optimization strategy,
where the intermediate transformer representations are
enhanced through iteratively estimated category-specific
prototypes and an auxiliary consistency loss.

3) We conduct in-depth experiments in one-shot ADL
recognition tasks, demonstrating clear benefits of visual
transformers as data-efficient body movement encoders.
Our PROFORMER model yields state-of-the-art on three
datasets [15], [16], [26], surpassing the best published
approach on the challenging NTU-120 benchmark by
1.84% for one-shot action recognition.

4) As a side-observation, we discover that PROFORMER
optimization strategy is much more resistant to noise
corruptions, outperforming the same backbone trained
with conventional deep metric learning strategy. We
believe this to be of vital importance for robotics
applications, since agents often face unstructured en-
vironments wth high levels of noise.

II. RELATED WORK

Data-efficient ADL recognition. Despite the impressive
improvements in general activity recognition [27], [28],

[29] and a variety of approaches developed specifically for
robotics [4], [5], [6], [8], [10], deploying such models in
practice is very hard, since robots often operate in dy-
namic environments where changes of potential activities
may occur at any time. Still, the majority of previously
published research strives for high accuracy on conventionl
ADL recognition datasets [5], [26], [30] assuming that a
large amount of labelled training examples is available for
every activity-of-interest. This is impractical in real robotics
applications, where data-efficient learning of new concepts
on-the-fly remains a key challenge [9].

Problems of learning activity representations which adapt
well to new data-scarce categories are often posed in the form
of few-shot recognition, where the methods usually fall into
one of two categories: (1) meta-learning-based methods [18],
[31], [32], [33], which reinitialize a new set of tasks every
epoch following the “learning to learn” paradigm and (2)
metric-learning-based methods [15], [16], [17], which aim
to project the input to a lower-dimensional space, where
same-category samples are close to each other and the inter-
category ones are far apart. Our approach falls in the latter
category. Few-shot learning has been well-studied in object
detection [34], [35] and various recognition tasks [36], [37].
The research of one-shot activity recognition from 3D body
poses has been much more sparse and is largely studied in the
context of one-shot recognition on the NTU-120 dataset [15],
[26], [38], [39], [40]. State-of-the-art recognition results are
currently reached by the approach of Memmesheimer et
al. [16], which uses a CNN-based encoding of 3D skeletons
represented as images and optimizes the framework with
deep metric learning using a mixture of cross entropy and
triplet margin losses. While we specifically focus on learning
data-efficient representations of 3D body poses [15], we need
to acknowledge an array of work on video-based activity
recognition from few training examples [11], [13]. In this
work, we for the first time explore the potential of encoding
body pose sequences directly using visual transformers,
which has been addressed with CNN-based [15] encoders
in the past. Our optimization procedure also builds on the
deep metric learning paradigm of [15] further extending it
with an auxiliary branch providing consistency loss using
learned augmentations at feature-level augmented by cluster
prototypes.
Visual transformers. Transformer networks [41] are rapidly
gaining popularity in computer vision since their opera-
tionalization on image patched within the ViT [42] and
DeiT [43] architectures. Following this trend, a high number
of models has been proposed, which are designed to achieve
high accuracy [44], resource-efficiency [45], [46] or are
tailored for specific tasks, such as object detection [47] or
semantic segmentation [22]. While multiple works lever-
age visual transformer models in conventional video-based
human activity classification [19], [48], [49], or standard
sequence transformers for skeleton encodings [28], [50],
[51], their potential of visual transformers as data-efficient
encoders of body movement cast as images has not been
considered yet and is the main motivation of our work.
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Fig. 2. Overview of the PROFORMER architecture. First, sequences of 3D body poses are encoded as image-like arrays (rows: time dimension, columns:
joint IDs, channels: 3D coordinates, see example visualizations in blue on the right). Then, the representations are divided into 2D patches and passed
together with the positional embeddings through a linear projection layer to compute 1D representation Epatch. Next, our model splits into the main and
the auxiliary branches with multiple transformer layers each, resulting in two intermediate embeddings EN−1 and E∗N−1 (auxiliary branch is marked with
∗). During training, EN−1 is used to iteratively estimate action-category specific representations (“prototypes”) stored in the prototype memory bank. These
prototypes are then used to augment the embedding of the auxiliary branch E?

N−1 in a two-stage manner resulting in the augmented feature E∗aug. The
embeddings EN−1 and E∗aug are passed through the final transformer block to obtain the final main and feature-augmented auxiliary embeddings E and
E∗. The mismatch of E and E∗ is used to estimate the consistency cost used together with the classification and triplet margin losses for optimization.

Furthermore, inspired by the recent success of feature aug-
mentation method in semi-supervised learning [24], we for
the first time propose training a visual transformer with an
additional auxiliary branch for augmenting the embeddings
using category-specific prototypes and self-attention.

III. VISUAL TRANSFORMER NETWORKS FOR
DATA-EFFICIENT REPRESENTATIONS OF BODY POSES

Our proposed approach is a transformer-specific training
strategy for robust one-shot action recognition. We refer
to the model leveraging both ideas as PROFORMER, since
the enhancements at feature-level are achieved with the
help of iteratively estimated action category PROtotypes. An
overview of the PROFORMER architecture is in Figure 2
and Algorithm 1. Next, we give a formal definition of the
addressed task (Sec. III-A); describe the general skeleton
embedding pipeline and fundamentals of the visual trans-
former backbone (Sec. III-B); and, finally, we present our
complete PROFORMER method leveraging augmentations
through iteratively estimated prototypes of activity categories
(Sec. III-C).

A. Problem formulation

Our idea is to leverage visual transformers to learn well-
adaptable skeleton movement embeddings which generalize
to new activity types with very little training data. The task
we address is one- and few-shot activity recognition from
body poses [15] where a priori knowledge acquired from
data-rich action classes is transferred to categorize new data-
scarce classes. Formally, Cbase denotes the set of |Cbase|
data-rich categories available during training through large
amount of labelled data Dbase = {(Si, li)}Ui=1, li ∈Cbase while
U indicates the number of samples in Dbase. Our goal is
to distinguish the |Cnovel | new activity classes Cnovel , for
which only κ reference training examples are available for
each class (where κ can be as few as 1). These data-scarce

examples are referred to as support set Dsupp = {Si}O
i=1

while O indicates the number of samples in Dsupp and
Cbase∩Cnovel = /0. The final task is then to assign a category
ln ∈Cnovel to each sample from the test set Dtest containing
samples from the data-scarce categories Cnovel .

B. Rethinking visual transformers for body poses

1) From 3D skeleton joints to image-like representations
and patch embeddings: Let S be a given sequence of T body
poses comprising the 3D coordinates (x,y,z) of J skeleton
joints. As mentioned before, multiple published frameworks
encode the joint positions or their displacements in 2D
arrays, which are then passed to convolutional networks [15],
[20], [21], [52]. In a similar fashion, we form the image-
like representation by first concatenating the coordinates of
different joints (xt

i ,y
t
i,z

t
i), i ∈ [0,J], t ∈ [0,T ] along the joint

axis (indexed with j) resulting in a single time-step vector
with dimensionality RJ×3 and then chaining these vectors
along the temporal axis t, which leads to an image-like
representation of shape RT×J×3.

While data in this form can be directly passed to a
2D convolution layer, a conventional transformer layer [41]
operates on 1D sequences of token embeddings and our
body pose representation should meet this requirement. In
visual transformers, this issue is often solved through patch
embeddings [42], dividing the 2D space patches, which are
then represented through learnt 1D embeddings. To this
intent, we downsample a 2D body pose representation S ∈
RT×J×3 into T J

M2 patches of size M×M. The flattened content
of each patch is passed to a linear projection layer hγ :
R(M2·3)→RH , resulting in a 1D vector ei ∈RH representing
the ith patch embedding. Additionally, positional embedding
si are linearly added to inject spatial information of the patch.
Then final sequence used as input to the transformer layer
then becomes Epatch = {e1 + s1,e2 + s2, ...,eL + sL}, where



the overall sequence length L corresponds to the number of
patches L = T J

M2 .
2) Visual transformer architecture: The key components

of a vanilla transformer block (see Figure 2 on the left) are
Multi-head Self-Attention (MSA) and Multi-Layer Percep-
tron (MLP), coupled with layer normalization and residual
connections at the end of each block [41], [42]. MSA chains
multiple Self-Attention (SA) layers, which are mostly based
on three concepts, Query, Key and Value denoted as Q,
K and V: SA(Q,K,V) = So f tmax(QKT/

√
sk)V, where sk

is the scaling factor to avoid the influence brought by dot
product on the variance. The self-attention mechanism uses
linear projections P to get the three main components Q,
K and V based on the sequence input Epatch, so that Q =
PQEpatch,K = PKEpatch,V = PV Epatch. Multiple SA results
are then linked in MSA through another linear projection
PMSA applied on concatenated SA outputs: MSA(Epatch) =
Concat(SA1,SA2, ...,SAN)PMSA. The Swin [44] model is
built exclusively upon transformer layers but features MSA
blocks with reduced complexity with shifted windows. The
LeViT [45] uses attentional bias instead of the positional
embeddings in order to reduce its influence while generating
Key. Furthermore, LeViT leverages a CNN before the patch
embedding step.
Deep metric learning optimization and inference. For
optimization, we follow the Deep Metric Learning (DML)
of Memmesheimer et al. [15]. We use Multi-Similarity
Miner [53] to select the most informative positive and nega-
tive pairs of embeddings which are then leveraged to create
triplets {(Ea,En,Ep)}Nt

i=1 for the triplet loss with margin
λ : Lt pl = ∑

Nt pl
i=1 [‖Eai −Eni‖−

∥∥Eai −Epi

∥∥+λ ]+, where Nt pl
denotes the number of triplets. As in [15], we use an
additional classification loss Lclass (cross entropy), so that the
final loss is a weighted sum of the aforementioned losses:
Lall = αLt pl +βLclass. When only few reference sample are
available at test-time, we pass the test example as well
as the reference samples through our model to obtain the
embeddings and then use nearest-neighbour to assign the
final category.

C. PROFORMER: Improving transFORMER training with
PROtotype feature augmentation

In this section, we introduce PROFORMER – an optimiza-
tion strategy for learning data-efficient movement embed-
dings inspired by the recent success of feature augmentation
methods in semi-supervised learning [23], [24], [25]. In addi-
tion to the transFORMER-based architecture and conventional
deep metric learning losses, PROFORMER leverages a con-
sistency cost encouraging the model to output similar results
if the body movement embedding is passed through trans-
formations. We achieve these transformations on feature-
level by augmenting the intermediate representations through
iteratively estimated action category PROtotypes and learnt
attention.

1) Feature-augmenting auxiliary branch: Conceptually,
the PROFORMER framework divides the architecture in
two branches after the patch embedding: the main branch

Fig. 3. Overview of the self-augmentation at feature-level leveraged in the
auxiliary branch of the proposed method. During the warm-up phase (top),
the feature itself is used as the basis to compute attention masks used to self-
augment the feature. At the later stage, we use action-specific prototypes
Softmax-normalized along the channel dimension in order to augment the
embedding (bottom).

used for the conventional DML training and inferring the
final movement embedding E used at test-time, and the
auxiliary branch aimed to produce augmented embedding
E?, after which the consistency cost of the main- and
auxiliary embeddings is estimated as consistency loss based
on cosine similarity: Lcons = 1− cos(E,E∗). Additionally,
the embeddings of the main branch are used to compute
activity-specific prototypes, which, in return, are used to
augment the features in the auxiliary branch explained in
the next section. The auxiliary branch is active only during
training supervised only via the consistency loss, while the
main branch is trained through a combination all three
losses: Lall = α ∗Lt pl +β ∗Lclass + γ ∗Lcons. Intuitively, we
incentivise the main branch encoder to push the initial and
the auxiliary-branch-augmented embeddings closer.

2) Feature Enhancements via Action Category Proto-
types and Self-augmentation Warm-Up: We build on the
top of a recent feature augmentation approach for semi-
supervised learning, but additionally propose a warm-up self-
augmentation phase and certain architecture changes, which
have proven to be effective in augmenting body movement.

Estimating action category prototypes. For the auxiliary
branch augmentations at feature-level, we draw inspiration
from FeatMatch [24], a recent method for self-supervised
image classification, where a learnt weighted combined
category-specific prototypes is used to enhance the interme-
diate features when referring to feature-level augmentations.
Specifically, for each data-rich action category li ∈Cbase, we
iteratively estimate its prototype in the latent space as the
center of all training set embeddings of the specific action
(we use the embeddings after the N − 1 layer if N is our
number of transformer layers). Note, that unlike FeatMatch,
we use the centers of the data-rich base categories available
during training (while clustering is used in self-supervised
learning due to absence of labels). Every epoch, these action
category prototypes are iteratively updated and stored into
a fixed-sized vector, which we refer to as the Prototype
Memory Bank (PMB). These action category prototypes are
then used for feature augmentations in order to estimate the



Algorithm 1 Training Procedure of PROFORMER

Input: S – a batch in Dtrain; Sp and Sn – positive and negative
anchor; f 1→N−1

δ
and f 1→N−1

θ
– first N-1 transformer layers

of main and auxiliary branches; f N
δ

and f N
θ

– the N-th (last)
transformer layer for main and auxiliary branches; EMB –
Embedding layer; Ne – maximum training epochs; Nt – epoch
threshold for the stage changing; E and E∗ – embedding
for main and auxiliary branches; PMB – Prototypes memory
bank; WarmUpAug and PrototypeAug – Warm-up stage and
prototype-based feature augmentation stage

1: for all epoch ∈ Range(Ne) do
2: for all S ∈ Dtrain do
3: if epoch > Nt then
4: for all l in labelS do Append(PMB[l]) → Listp
5: end for
6: E∗P = Concat(Listp)
7: end if
8: if BaseModel is not None then S = BaseModel(S)
9: end if

10: Epatch = PatchEmbeddingAndEncoding(S)
11: EN−1 = f 1→N−1

δ
(Epatch), E∗N−1 = f 1→N−1

θ
(Epatch)

12: if epoch < Nt then E∗aug =WarmU pAug(E∗N−1)
13: else E∗aug = PrototypeAug(E∗N−1,E

∗
P)

14: end if
15: E = EMB( f N

δ
(EN−1)), E∗ = EMB( f N

θ
(E∗aug))

16: Lt pl = TripletMarginLoss(E,En,Ep)
17: Lcons =ConsistencyLoss(E,E∗)
18: Lclass =Classi f icationLoss(Head(E), labelS)
19: BackPropagation(Lt pl +Lclass +Lcons)
20: end for
21: if epoch < Nt −1 then
22: CalculatePrototypes(Dtrain)→ Set(EN−1)→ PMB
23: end if
24: end for

consistency cost.

Prototype-based feature enhancement with self-
augmentation warm-up. Leveraging prototype-based
augmentation in context of one-shot learning requires
further conceptual changes. First, since the prototypes
indeed correspond to actual action categories from
Cbase (i.e. only one of the current training categories is
correct), we first apply Softmax normalization across the
channel dimension for prototypes vector E∗P and then
refine it with the features E∗N−1 and project it into an
embedding space as E∗r,N−1 = g2

µ(So f tmax(E∗P) · E∗N−1).
At the same time, the features E∗N−1 is also projected
as E∗l,N−1 = g1

µ(E∗N−1). Then the attention weight W
is calculated as W = So f tmax(E∗l,N−1

T E∗r,N−1). After
aggregating the information coming from prototypes vector
E∗P to original feature E∗N−1 as,

E∗agg,N−1 = g3
µ([WE∗r,N−1,E

∗
l,N−1]), (1)

the final augmented feature E∗aug is then obtained through
a residual connection with original feature E∗N−1 by E∗aug =

ReLU(E∗N−1+E∗agg,N−1), where g1
µ and g2

µ indicate two fully-
connected (fc) layers (no weight sharing), and g3

µ indicates a
stack of two fc layers with ReLU in the middle. [·] denotes
concatenation. As in our case the prototypes are linked to
true action categories from Cbase (in contrast to unsupervised
clustering necessary in self-supervised tasks), using centers

of the assigned categories in the early training epochs would
be unreliable. To alleviate this issue, we introduce an ad-
ditional warm-up phase. The key idea is to leverage self-
augmentation instead of prototype-based augmentation until
certain level of convergence is reached. At earlier stages,
we therefore replace the attended prototype representation
with the embedding E∗N−1. Figure 3 illustrates the difference
between the self-augmentation warm-up phase (top) and the
prototype-based augmentation (bottom).

IV. EXPERIMENTS

A. Datasets and implementation details

We perform comprehensive studies for one-shot human
activity recognition from 3D body poses on three chal-
lenging datasets: NTU-60 [54], NTU-120 [26] and Toyota
Smarthome [30]. To compare with competitive state-of-the
art methods for data-efficient recognition, we select NTU-
120 as our primary test bed, as it is a well-established bench-
mark for one-shot recognition from 3D body poses [15],
[26], [38], [39], [55]. Additionally, we adapt the evaluation
protocols of Toyota Smarthome and NTU-60 to suit our
data-scarce representation learning task. The NTU-120/NTU-
60/Toyota Smarthome benchmarks feature 100/48/24 data-
rich training categories and 20/12/7 data-scarce test cate-
gories respectively for which κ ∈ {1,3,5} reference exam-
ples are available (see problem definition in Sec. III-A).
Implementation details. For PROFORMER training we set
the warm-up phase threshold Nt = 20 and train our model
using RMSProp [56] for 100 epochs and batch size of 32.
To reproduce the performance of our approach on the NTU-
120, we use the learning rate of 3.5e−6 with the weights
of three different losses selected as 0.5. In addition to the
aforementioned implementation details of our approach on
the NTU-120 dataset [26] for one-shot action recognition in
our paper, for the other two datasets, the learning rate is
chosen as 3.5e−4 due to the different difficulty level of dif-
ferent datasets and the weight of the consistency loss for the
experiments on the NTU-60 [54] and Toyota smarthome [30]
is chosen as 0.1 together with batch size selected as 32. The
detailed evaluation protocols will be released in our github
repository.

B. Experiment results

Table I illustrates the one-shot recognition results on NTU-
120 [26] for different variants of our transformer-based
model compared with (1) the previously published methods
for one-shot recognition from body poses (first group of
approaches), (2) the CNN-based skeleton encoding baselines
implemented for the Transformer vs. CNN study (second
group), and against each other. In the latter case, we first
consider (3) two off-the-shelf visual transformers trained
with the native DML paradigm as explained in Sec. III-
B (4th group in Table I), and, finally, we consider (4) the
two selected variants (with the LeViT and Swin backbones)
equipped with the proposed PROFORMER optimization de-
scribed in Sec. III-C (the last group of approaches in Table I).
The results further validated through three-shot experiments



TABLE I
COMPARISON TO THE EXISTED METHODS FOR ONE-SHOT ACTIVITY

RECOGNITION FROM 3D BODY POSES ON NTU-120,† INDICATES THE

APPROACHES ARE IMPLEMENTED BY [26]

Encoder Accuracy F1 Recall Prec

Previously published Approaches

AN† [39] 41.0 - - -
FC† [39] 42.1 - - -
AP† [38] 42.9 - - -
APSR [26] 45.3 - - -
TCN-OneShot [55] 46.3 - - -
SL-DML [15] 50.9 - - -
Skeleton-DML [40] 54.2 - - -

Transformer-based Encoder of 3D Body Poses optimized with DML (ours)

SL-DML (Swin) [44] 53.13 52.09 53.48 53.16
SL-DML (LeViT) [45] 53.19 52.22 53.85 53.29

CNN-based Encoder w. Prototype Augmentation (ours)

ProCNN (SL-DML [15]) 46.93 45.40 47.17 46.96

Transformer-based Encoder w. Prototype Augmentation (ours)

ProFormer (Swin) 54.70 53.39 54.81 54.63
ProFormer (LeViT) 55.94 54.29 55.80 56.04
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Fig. 4. Impact of temporal resolution on a transformer- and a CNN-based
model (SL-DML refers to the approach of [15] which encodes body pose
sequences with a ResNet). We drop portions of the input sequence at test-
time (a downsampling rate of 12 means that 1

12 th of the input was used).

on NTU-120, NTU-60 and Toyota Smarthome (Table II),
where we compare the best performing CNN-based (leverag-
ing the ResNet18 backbone, i.e., the approaches of [15], [15])
and transformer-based approaches (using Swin and LeViT
backbones). In all test beds, we consider the transformer-
based body pose embedding framework with and without
the PROFORMER optimization.

1) Evaluation of the PROFORMER approach: Next, we
empirically evaluate the PROFORMER training strategy.
Specifically, we equip the selected best transformer-based
architectures, (i.e., variants with LeViT [45] and Swin [44]
backbones) with the auxiliary branch for attention-based
augmentations via feature-level prototypes introduced in
Sec. III-C. This branch is used to compute an additional
auxiliary consistency loss and the most meaningful compari-
son of PROFORMER is therefore against its same-backbone-
counterpart optimized with deep metric learning only. Al-
though our method does not influence the architecture at test-
time, it performs surprisingly well. For example, for one-shot
recognition, PROFORMER optimization leads to accuracy
gains between 1.57% (NTU-120, Table I) and 6.21% (Toyota
Smarthome, Table II) for the Swin backbone. We observe
the benefits of PROFORMER across all datasets, surpassing
the two best previously published approach SL-DML [15]
by > 5% and Skeleton-DML [40] by 1.84% (Table I). In-

terestingly, the LeViT-based PROFORMER achieves the best
results on all settings of NTU-120 and NTU-60, while the
Swin-based PROFORMER is considerably better on Toyota
Smarthome (Table II). One potential explanation is the less
controlled environment in Toyota Smarthome resulting in
noisier body pose sequences. Swin simplifies the multi-
scale attention using shifted window, which might lead to
less overfitting to noisy data. The visual transformer-based
encoder structure shows better performance while comparing
with GCN-, CNN- and skeleton-transformer based encoder as
illustrated in Table V for one shot action recognition on NTU
120 dataset, where CTR-GCN [29] and ST-TR [28] are sep-
arately leveraged for GCN-based and skeleton-transformer
based encoders. As shown in Table I, we also evaluate
the performance of the proposed two-stage training strategy
with a CNN-based encoder (specifically SL-DML), marked
as PROCNN. Interestingly, the performance of PROCNN
decays compared with SL-DML approach, indicating that
the proposed training strategy is effective specifically for
transformer-based architectures.

The effect of the warm-up phase. As explained in Sec. III-
C, our method is inspired by the recent FeatMatch [24]
technique proposed for semi-supervised image classification,
but has multiple conceptual changes, mostly motivated by the
fact, that our approach can leverage prototypes specific for
the data-rich movement categories from Cbase, while this is
not the case in semi-supervised learning. The most important
difference is presumably the additional warm-up stage, with
self-augmentation, as category-specific prototypes are not
well-formed in the first stages of training. Our ablation
experiment in Table IV validates this assumption, showing
that the accuracy degrades by almost 3% when no warm-up
was employed and action category prototypes were leveraged
from the very beginning.

Tolerance to noisy inputs. The quality of the skeleton data
itself is influenced by a variety of factors, such as sensor
noise or occlusions. A larger gap between our PROFORMER
model and standard DML trained on Toyota Smarthome
(which is noisier than the more controlled NTU-datasets)
hints towards its advantages specifically for imperfect input.

To validate if this is the case, we evaluate the model for
inputs corrupted by different magnitudes of Gaussian noise
and discover a remarkable tolerance of PROFORMER in this
regard (Table III). While the prediction quality diminishes
for DML-based models, the PROFORMER approach is much
more robust when confronted with unreliable data. In par-
ticular, the performance for PROFORMER-LeViT falls from
55.94% on clean data to 51.91% for Gaussian noise with σ =
0.05, while this decline is much higher (53.19%→ 21.97%)
for LeViT trained without the proposed auxiliary branch.
We attribute this to the extensive learnt augmentations at
the feature-level taking place in the PROFORMER auxiliary
branch. The additional consistency loss encourages the model
to output similar results if the embedding has been altered,
which suits naturally to the use-case of noise disturbances.
We compare our PROFORMER only with SL-DML for ro-



TABLE II
RESULTS FOR ONE- AND THREE-SHOT RECOGNITION FROM 3D BODY POSES ON NTU-120 [26], NTU-60 [54], AND TOYOTA SMARTHOME [30].

Encoder NumShots NTU-120 NTU-60 Toyota Smart Home
Accuracy F1 Recall Precision Accuracy F1 Recall Precision Accuracy F1 Recall Precision

CNN-based Encoder of 3D Body Poses optimized with DML (approach of [15])

SL-DML [15] 1 49.19 47.54 49.80 49.23 54.82 54.31 56.72 54.65 58.98 27.15 27.64 35.00
SL-DML [15] 3 59.95 58.97 59.94 60.03 64.84 83.56 64.80 64.84 60.54 28.39 31.01 34.39

Skeleton-DML [40] 1 50.07 48.77 51.21 50.67 55.54 50.88 53.13 51.24 47.31 18.45 18.58 23.80
Skeleton-DML [40] 3 61.85 60.84 62.45 61.83 66.36 66.29 67.40 66.35 54.91 28.67 34.76 35.91

Visual Transformer-based Encoder of 3D Body Poses optimized with DML (ours)

Swin [44] 1 53.13 52.09 53.48 53.16 56.99 56.24 58.67 56.99 58.76 28.83 29.17 32.34
Swin [44] 3 60.65 60.41 61.30 60.71 64.73 64.83 65.53 64.72 60.71 28.40 28.48 33.43
LeViT [45] 1 53.19 52.22 53.85 53.29 64.45 64.17 66.35 64.47 62.22 31.98 37.56 35.16
LeViT [45] 3 62.04 61.59 62.81 62.14 68.89 68.66 70.02 68.89 53.81 28.49 31.31 36.50

Visual Transformer-based Encoder with Prototype Feature Augmentation (ours)

ProFormer (Swin) 1 54.70 53.39 54.81 54.63 58.61 57.70 59.60 58.60 64.97 29.42 30.96 32.27
ProFormer (Swin) 3 60.97 60.51 61.95 61.04 64.91 64.21 64.90 64.90 77.51 38.48 38.15 41.07
ProFormer (LeViT) 1 55.94 54.29 55.80 56.04 67.67 67.87 68.74 67.67 64.46 31.91 34.07 33.58
ProFormer (LeViT) 3 62.62 62.08 63.01 62.71 72.47 72.20 73.25 72.47 64.18 29.98 31.60 31.58

TABLE III
EFFECT OF INPUT CORRUPTION ON THE NTU-120 BENCHMARK FOR

ONE-SHOT ACTIVITY RECOGNITION.

Control Condition Gaussian Noise σ = 0.1,µ = 0
Encoder Accuracy F1 Recall Prec.

ResNet18 [57] 21.42 11.83 8.50 21.71
LeViT [45] 22.31 12.32 8.79 22.40
ProFormer (LeViT) 52.54 51.16 51.61 52.65

Control Condition Gaussian Noise σ = 0.05,µ = 0
Encoder Accuracy F1 Recall Prec.

ResNet18 [57] 21.76 12.23 8.70 21.86
LeViT [45] 21.97 12.82 9.69 22.07
ProFormer (LeViT) 51.91 50.08 51.67 52.01

bustness verification since the input form is the same to ours
to make fair comparison, while the only difference between
SL-DML and Skeleton-DML is the input form. Although
resistance to noise is not the primary goal of this paper, we
see it as an interesting finding and aim to explore it in depth
in the future.

Impact of the temporal resolution. Lastly, we look at
the role of temporal dimension by explicitly blending out
portions of skeleton sequences at test-time. Our intuition is
that if the model learns movements, local temporal changes
of the skeleton positions should be important for the decision
and the performance should monotonically decrease as the
sequences get shorter. Figure 4 illustrates the changes in
accuracy if the input stream was downsampled by different
rates. For example, the downsampling rate of 2 means that
we pick up the frames using temporal step as 2. In Figure
4, while the overall accuracy of PROFORMER is higher than
for the reference approach [15], it consistently declines for
the transformer-based network as more sequence parts are
removed. This is not the case for a CNN-based approach,
where the performance starts to decline only if the sequence
is 10 times shorter. Surprisingly, up until the downsampling
rate of 8, the CNN-based method yields a slight performance
increase, indicating that the reference framework puts more
weight on classification of static skeleton poses while the
movement plays a less role, rather constituting additional
noise. In contrast, local skeleton movements seem to be
captured by PROFORMER, as the recognition quality de-
clines with larger temporal downsampling rate. We view
the learning of temporal cues as a positive property of

TABLE IV
EFFECT OF THE SELF-AUGMENTATION WARM-UP USED IN THE

PROFORMER (ONE-SHOT RECOGNITION ON NTU-120).

ProFormer Variant Accuracy F1 Recall Precision

No self-augment. warm-up 53.25 51.82 53.48 53.36
With self-augment. warm-up 55.94 54.29 55.80 56.04

TABLE V
A COMPARISON TO OTHER ENCODER ARCHITECTURE.

Methods Accuracy F1 Recall Precision

SL-DML (CTR-GCN[29]) 43.92 41.38 45.21 43.89
SL-DML (STTR[28]) 39.56 39.45 41.92 39.58
ProFormer (LeViT) 55.94 54.29 55.80 56.04

transformer-based approaches and believe that their initial
objective of dealing with sequential data [41] makes them
excellent encoders of body movement.

V. CONCLUSION

To effectively assist people, robots need to accurately
understand the current state of the human [10]. In this
work, we tackle the problem of data-scarce recogition of
daily activities, which is vital for robust and interactive
assistive robots operating in dynamic and unstructured en-
vironments, where novel avtivities-of-interest may occur at
any time.We operationalize and study off-the shelf well kown
visual transformer architectures in the context of one-shot
recognition from 3D skeletons by casting these streams of 3D
coordinates of joints as image-like representations, yielding
excellent performance on three datasets. Inspired by recent
success of augmentation-based methods in semi-supervised
learning, we further introduce the PROFORMER leveraging
an additional auxiliary branch encouraging the embedder to
produce similar results despite extensive augmentations at the
feature-level. A key ingredient of our approach is a two-phase
augmentation technique leveraging learned self-attention to
alter the embedding based on either the input itself (warm-
up phase) or, at the later stages, based iteratively updated
embedding prototypes of activity classes. With no change
of the architecture at test-time, the PROFORMER approach
consistently improves performance, surpassing the best pub-
lished method for skeleton-based one shot recognition by
1.84% and shows more robust performance.
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